Mid-IR and Near-IR in situinstrument needs Dr. Christopher R. Webster Jet Propulsion Laboratory California Institute of Technology NASA Code Y Workshop on Spectroscopic Needs for Atmospheric Sensing San Diego, California, USA 22-26 October, 2001 #### **Table of Contents** - Laser absorption spectroscopy - Overview of aircraft, balloon, and ground-based instruments - TABLES of in situ laser spectrometers - IR Vibration-Rotation Line Shapes - Spectroscopic needs - Calibration methods for in situ laser spectrometers - Measurements of Atmospheric Tracers N₂O, CH₄, CO - Atmospheric Measurements of H₂O - Near-IR H₂O Measurements - Measurement of Water Isotopes HDO, H₂¹⁸O, H₂¹⁷O - Near-IR and Mid-IR Spectroscopy of Water Isotopes HDO, H₂¹⁸O, H₂¹⁷O - Near-IR and Mid-IR Isotopic CO₂ - Near-IR LAS for Global CO₂ Mapping - Outlook for TDL and QC in situ laser spectrometers - Summary of Near-IR Spectroscopic Measurement Needs - Summary of Mid-IR Spectroscopic Measurement Needs Laser Absorption Spectroscopy - Narrowband (0.0005 cm⁻¹) tunable diode lasers (TDL) and Quantumcascade (QC) lasers matched to absorption line(s) (1.3 – 10 μm) of gases of interest. - Numerous TDL-based absorption instruments have been flown on balloon & aircraft missions. - For Earth, well-suited to certain target gases: H₂O, N₂O, CH₄, CO, HCI, NO₂, HNO₃, H₂CO, isotopes of H₂O, isotopes of CO₂. - Sensitivity sub-parts-per-billion. ### Overview of Aircraft, Balloon, and Ground-based instruments ~ 30 TDL/QC laser spectrometers currently measuring Earth atmospheric gases #### Laser Sources: - Near-IR TDLs (InGaAsP) operate cw at room temp (TE cooler) - Traditional Mid-IR (Pb-salt) TDLs operate at LN₂ temps - Mid-IR QC lasers (InGaAs) operate cw at LN₂, pulsed at room temp #### Measurement Geometry: Open path (large ΔT) or flowing cell (Tregulated) #### Technique: - Line-locked: higher duty cycle (precision), poor line information - Tunable: full spectral line information, lower duty cycle (precision) [2f or sweep integration] - LAS and CRDS Unified N_2O : GCMS has better absolute accuracy, but laser spectrometers offer superior sensitivity, specificity, precision, and response time. #### Mid-IR Aircraft, Balloon, and Ground-based Spectrometers | | 20.00 | - 1 · | To a | | 77. 16 | | | C 111 41 | | 1. | |-------------------------|---|--------------------------|--|------------------------------|--------------------|--|--------------------------------------|---|--|---| | Instrument | Path | Technique | | Institution | | | 1) | | Precision 1 σ | Accuracy | | | Herriott | Tunable
TDL and
QC | Chris Webster | JPL | | CH ₄
CO
CO ₂
HCl
NO ₂ | 1256
2169
2233
2926
1603 | flight CO ₂
Pre-flight
Pre-flight
In-flight CH ₄
Pre-flight | 0.3% in 1.3 sec
1% in 1.3 sec (trop)
N/A
1%
5% | ± 1.8%
± 3%
± 3%
N/A
3%
5% | | | Open path
Herriott
cell
64 m | | | | Balloon | N ₂ O
CH ₄
HCl | 2927.1
2925.9 | Pre-flight
In-flight CH ₄ | 3 % | ± 5%
± 5%
± 10% | | ALIS | | Tunable QC | Chris Webster | JPL | | CO ₂ | 2303 | 0 | 0.1% for line ratio
in 1.3 sec | Isotopic
ratio | | | Flowing
Herriott
cell | | M ax
Loewenstein,
Hansjurg Jost | | | | 2 2 0 6
3 0 2 8 | In-flight | | 3.5% in 2 sec | | | Flowing
White cell | Line-locked | | NASA Ames | E R -2 | N ₂ O | 2232 | In-flight | about 0.1% | 1% 1σ | | | Open path
0.3-1 km
(Lowered
retro) | | | JP L | | N ₂ O
CH ₄
CO
NO ₂
NO
HNO, | | Spectroscopic
line parameters | 1-5% in 30 sec | 2-15% | | | Flowing
cell
36 m
Herriott
Cell | Line-locked | Glen Sachse | NASA LaRC | D C -8 | CO
CH ₄ | 3018 ± | | 0.1% in 1 sec | 2 %
1 %
1 % | | | Flowing
cell
36 m
Herriott
Cell | Line-locked | Glen Sachse | NASA LaRC | | | 3018 ± | In-flight
NOAA/CMDL
Standard | | 2 %
1 % | | FLAIR | Flowing | and 2f | | Canada,
M P I
Germany. | | NO ₂
HCHO
CO | 1629
1730
2073 | - | | | | NERC IFM A spectrometer | Open path | | Howieson,
Duxbury,
Swann,Gardiner, | Strathclyde
U., NPL, & | Balloon
5-30 km | C H ₄ | 6097 | ?????? | ?????? | ?????? | #### Mid-IR Aircraft, Balloon, and Ground-based Spectrometers (contd.) | Instrum ent | Path | Technique | PI | Institution | Platform | Gas | Line
(cm ⁻¹) | C alibration | Precision 1 σ | Accuracy | |--|--|---|-------------------------------------|---|--|--|-----------------------------|--|--|--| | NERC
COSMAS
NIR | Flowing
cell or open
path | Tunable | | Strath cly de
U.,
& Imperial
College, UK | Ground or
aircraft | C 2 H 6
C H ₄ ,
C H 3 O H
H 2 C O | | | T B D | T B D | | N C A R
T D L A S | ?????? | ?????? | Bill Mankin
and Mike
Coffey | N C A R | W B-57
C-130 | C O ,
N 2 O | ?????? | ?????? | 3% in 30 sec | 5 % | | NOAA
TDLAS | ?????? | ?????? | Eric
Richards,
Ken Kelly | N O A A | W B - 57 | СН₄ | ?????? | ?????? | ?????? | <mark>5 %</mark> | | OPTIM A | Open path
Herriott
cell | Rapid Scan
HF 2f | Jim Podolske | NASA ARC | D C -8 | HNO ₃ | 1721-
1723 | A bsolute
spectral
parameters | T B D | T B D | | C avity
R ingdown
L aser
Spectrometer | ?????? | ?????? | Jim
Anderson | H arvard
U niversity | W B - 57 F | C H ₄ | 1333 | Pre-flight +
in-flight gas
addition | 0.3% for 10 sec | 1 % | | Eddy –
Correlation
TDLAS | Flowing
cell
(Herriott) | Dewar based, tunable system with line locking | Peter Werle
and Robert
Korman | Fraunhofer
Institute,
Germany | Ground | CH ₄ | 1290 | Calibration Gas from cylinder + dilution system (every 30 min) | 0.5% for 0.1 sec | ?????? | | TDLAS for
formaldyhyde | Flowing
A stigm atic
H erriott
cell | Tunable, 2f + sweep integration | Alan Fried | | Ground,
DC-8,
Electra,
WP3, C-
130 | нсно | 2831.6417 | calibration
and zeroing | 20 – 50 pptv in
minute (1σ), 150
– 400 pptv in 1
second | 6 - 10 % | | M id infrared
T D L A S | Flowing
cell (W hite) | Tunable
system with
line locking | Peter Werle
et al. | Fraunhofer
Institut,
Germany | | N О ;
С Н ₄
Н С О Н | 1600
3076
2800 | System
Calibration
Gas
Permeation
System | 0.3% for 1.5 sec 0.08% for 25 sec 0.3% for 1.5 sec 0.08% for 25 sec 0.08% for 0.06 sec 0.5% for 1 sec 0.1% for 20 sec 1.4% for 1.5 sec 0.3% for 40 sec | ? ? ? ? ? | | TDLAS | ?????? | | Harold Schiff | | | NO ₂
HNO ₃ | ?????? | | ?????? | ?????? | | TDLAS | Flowing
White cell | ?????? | Don Hastie
and Miller | ?????? | Balloon | NO,
NO2 | ?????? | ?????? | ?????? | ?????? | | TILDAS-36 TILDAS-200 | Flowing
path | Tunable,
direct
absorption | M ark
Zahniser | Aerodyne
Research
Inc | Tower
Mobile | CH ₄
N ₂ O
HNO ₃
NO ₂
NO
SO ₂
NH ₃ | | Calgas
HITRAN line
parameters | 0.1% in 1 sec
500 ppt 1 sec
200 ppt 1 sec
500 ppt 1 sec
500 ppt 1 sec | ±5%
±5%
±20%
±20%
±20%
±20%
±20% | #### **Near-IR Aircraft and Balloon Spectrometers** | Instrument | Path | Technique | PI | Institution | Platform | Gas | Line (cm ⁻ 1) | Calibration | Precision
1 σ | Accuracy | |---------------------------|-------------------------------|--|------------------------------------|-------------------------------|----------|------------------|--|----------------------------------|--|----------| | | 30m
Open
path | Line locked | Glenn
Sachse
Jim
Podolske | NASA
LaRC/Ames | DC-8 | | 7118 and
7122 | Pre and post
mission | Greater of 0.1 ppmv or 2% conc. in 50 msec | 10% | | JLH-ER-2 | Open
path | Tunable | Bob
Herman | JPL | ER-2 | H ₂ O | 7294.1 | Pre-flight | 1-2% in 1
sec | ± 5% | | | Open
path | Tunable | Bob
Herman | JPL | W B 57 | H ₂ O | 7299.4 | Pre-flight | 1-2% in 1
sec | ± 5% | | JLH-DC-8 | Open
path | Tunable | Bob
Herman | JPL | DC-8 | H ₂ O | 7306.8 | Pre-flight | ?????? | ?????? | | NCAR
Water | Open
path | Tunable | Bruce
Gandrud | NCAR | | | ?????? | ?????? | ?????? | ?????? | | | Open
path | Tunable,
Balanced
ratiometric
detection | David
Sonnenfroh | | Р3 В | H ₂ O | 7181.2 | ?????? | ?????? | ?????? | | SDLA | Open
path | Tunable | Georges
Durry | CNRS,
France | | H ₂ O | 6046.9,
7181.1(strat)
7188.3(trop)
7185.6(trop)
7183(trop) | Pre-flight | ?????? | 5%-10% | | SWS LH | Open
path | Tunable | Joel Silver,
DC Hovde | Southwest
Sciences,
Inc | KC-135 | H ₂ O | | ?????? | ?????? | ?????? | | Near
infrared
TDLAS | Flowing
cell
(Herriott) | Peltier
cooled,
tunable
system with
line locking | Peter
Werle et al. | | Ground | CO, | 4990 | Calibration
Gas | 0.08% for
1 sec | ?????? | | TOTCAP
Water | Flowing
path | Tunable | Linnea
Avallone | LASP/
U.Colorado | | | 7306.75 | Pre-flight
and post
flight | 1-2% in 1
sec | 5%-10% | •Increasingly-sophisticated scientific questions addressed by *in situ* payloads (aircraft, balloon) has increased demand for higher precision, higher accuracy measurements of tracers, water. (e.g. CO₂ vs. N₂O tracer correlations) •Aircraft platforms have duplication with differing techniques for continuous intercomparison. 1800 1600 1400 1200 1000 800 600 M-Siapos 444, 960610 ATM Q3. Tree-O ATM 03. A KING VEHICLE #### **IR Vibration-rotation Lineshapes** #### Linestrength is integrated absorption coefficient $$S = \int k(\widetilde{v})d(\widetilde{v})$$ $$k(\widetilde{v}) = Sg(\widetilde{v} - \widetilde{v}_o)$$ Natural linewidths ~tens of kHz (msec lifetimes) Doppler Line Broadening $$\gamma_D$$ directly $\propto T^{\frac{1}{2}}$ = 3.581 x 10^{-7} $v_0(T/M)^{1/2}$ cm⁻¹ (~ tens of MHz) $$k(\widetilde{v}) = \left(\frac{S}{\gamma_D}\right) \left(\ln 2/\pi\right)^{1/2} \exp\left[-(\widetilde{v} - \widetilde{v}_o) \ln 2/\gamma_D^2\right]$$ Collisional Line Broadening $$\gamma_L \propto 1/T^{1/2}$$ $$g_{L}(\widetilde{v} - \widetilde{v}_{o}) = \frac{\left(\gamma_{L}/\pi\right)}{\left(\widetilde{v} - \widetilde{v}_{o}\right)^{2} + {\gamma_{L}}^{2}}$$ $$\gamma_L = \left[\gamma_A \left(\frac{P_a}{P_0} \right) + \gamma_B \left(\frac{P_b}{P_0} \right) \right] \left(\frac{T_o}{T} \right)^s$$ SBC > FBC SBC= $0.08 \text{ cm}^{-1} \text{ atm}^{-1}(\text{CH}_4) \text{ to } 1.0 \text{ (HNO}_3)$ FBC up to 0.15 cm⁻¹ atm⁻¹ for N₂ on H₂O Width usually varies smoothly with m. Mixed Lineshapes and the Voigt Profile •Pressure-broadening coefficients of H₂O known to depend on rotational quantum numbers of vibe-rot transitions involved, but not always temp dependence (0.6-0.8) [Varanasi] # Spectroscopic needs for in situ laser spectrometers • Spectroscopic needs are <u>fundamentally different</u> from those of remote sensing spectrometers. - •Care about behavior of <u>carefully-chosen</u>, <u>isolated</u>, <u>single lines</u>: - absolute line strength (precision) - E" (temperature change or extrapolation susceptibility) - broadening coefficient and temp dependence (extrapolation linearity) - temperature dependence of line shape to avoid surprise in modulation methods - interferences (esp. for weak lines of CH₄, H₂O, CO₂, O₃ etc.) - •Pressure-shifts for instruments line-locked to fixed reference cell pressure. - For known spectroscopic parameters, absorption method is self-calibrating through Beer's Law. - Need path length, laser line-width (Doppler cells), pressure, temperature, direct absorption spectrum. ## Calibration methods for in situlater spectrometers #### REACTIVE GASES - Chemically, thermally, or photochemically unstable in reference gas cells - Pre-flight calibration difficult (especially at low Temps and low mixing ratios: - sticky (polar) molecules: HNO₃, H₂O, HCl - NO, NO₂ permeation tubes - H₂CO (Alan Fried) uses Henry's Law Calibration System HLCS - H₂O laser spectrometers use chilled-mirror frostpoint hygrometer - <u>Rely</u> on spectroscopic line parameters that limit measurement uncertainty to ~5-10% - Use adjacent line normalization where possible (e.g. CH₄ for HCl) ### Calibration methods for *in situ* laser spectrometers (contd.) #### **STABLE GASES** - Pre-flight calibration using gas standards (~1%) - •Referenced to NIST or CMDL standards - •Easy to map pressure dependence - •Very difficult to map temp dependence - In-flight switching to reference gas cells - •Need to be same pressure and temp as sampled atmosphere - In-flight calibration using reference atmospheric gas lines such as ${\rm CO}_2$ - •Even seasonal cycle variation in CO_2 is only $\pm 1.4\%$ - •But still limited by pressure broadening parameters # Measurements of Atmospheric Tracers N₂O, CH₄, CO | | BAND | UNC | ERTAINT | <u>Y</u> | | | | |--|----------------|------------|---------|--|--|--|--| | | <u>Li</u> | ine streng | gths FB | SC | | | | | Strong N ₂ O bands: | | | | | | | | | ~4.5 µm (2200 cm ⁻¹) | v_3 | 3% | 4% | smooth FBC, S, n, with m: | | | | | | | | | (Fukabori, Varanasi) | | | | | ~7.7 µm (1300 cm ⁻¹) | \mathbf{v}_1 | 3% | 4% | | | | | | Strong CH ₄ bands: | | | | | | | | | ~3.3 µm (3000 cm ⁻¹) | v_3 | 1-2% | 2-5% | some differences, line mixing (Fukabori) | | | | | ~7.7 µm (1300 cm ⁻¹) | $\mathbf{v_4}$ | 2-5% | 2-5% | | | | | | ~2.3 µm (4350 cm ⁻¹) | $v_3 + v_4$ | 2-5% | 2-5% | | | | | | Strong CO bands: | | | | | | | | | ~4.8 µm (2100 cm ⁻¹) | fund. | 2-5% | 5-10% | series var. of n 0.6-0.8 with m (Varanasi) | | | | | [~2.4 µm band (near-IR) too weak for stratosphere] | | | | | | | | ## Measurements of Atmospheric Tracers N₂O, CH₄, CO (contd.) For typical aircraft data altitudes (50-300 mbar) - 2% error in FBC results in ~2% error in final mixing ratio - 2% error in n results in ~1% error in final mixing ratio #### Atmospheric Measurements of H₂O Minimum-detectable mixing ratio for 10 meter path length and 2 x 10⁻⁵ absorptance: - Mid-IR is 20 times stronger than near-IR at 1.37 µm - 30 parts-per-billion at 1.37 µm (in 1 sec) - 1.5 parts-per-billion at 5.9 µm - Near-IR TDLs available at room (TE cooler) temperatures, and InGaAs detectors are excellent. - Mid-IR QC lasers will eventually dominate and offer much shorter pathlengths, smaller instruments. ### **Near-IR** Measurements of H₂O - •Unlike other gases, H₂O mixing ratios span 4 orders of magnitude from trop to strat. - •Usually <u>calibrate</u> with chilledmirror frost-point hygrometer at <u>room temp.</u> - •For diff temperatures, extrapolation is necessary. - •Accuracy in FBC (esp.) and its' T dep is critical. | Instrument (PI) | Line | intensity S | FBC | SBC | E" | n | reported | reported | change | change | |---------------------|-----------|-----------------|----------|----------|---------|------|------------|------------|-------------|-------------| | | cm-1 | cm-1/molec.cm-2 | cm-1/atm | cm-1/atm | cm-1 | | inten. Err | FBC err | rel to Toth | rel to Toth | | | | (296K) | (296 K) | (296 K) | | | | | intensity | FBC | | DLH (Sachse) | 7139.107 | 1.20E-20 | 0.0935 | 0.504 | 325.348 | 0.69 | 2-5% | 5-10% | | | | PSI (Sonnenfroh) | 7182.995 | 5.30E-21 | 0.098 | 0.488 | 142.279 | 0.76 | 2-5% | 5-10% | | | | JLH ER-2 (Herman) | 7294.1360 | 1.900E-20 | 0.0985 | 0.433 | 23.7940 | 0.78 | 2-5% | 5-10% | 24% | -16% | | JLH WB-57F (Herman) | 7299.4490 | 1.300E-20 | 0.1039 | 0.443 | 42.3720 | 0.68 | 2-5% | ave or est | 34% | -11% | | JLH DC-8 (Herman) | 7306.7360 | 2.000E-20 | 0.0973 | 0.490 | 79.4960 | 0.72 | 2-5% | 5-10% | 10% | 13% | | C-130 (Gandrud) | | | | | | | | | | | | TOTCAP (Availone) | | | | | | | | | | | | SW Sciences | 7612.0000 | | | | | | | | | | ## Measurements of Water Isotopes H₂O, HDO, H₂¹⁸O, H₂¹⁷O - Determine the processes that regulate upper tropospheric (UT) water vapor, and its' transport into the lower stratosphere (LS). - •Does Strat-Trop Exchange occur through isolated deep convection in the tropics, or gradual uplift of high cirrus or ice sublimation? - •HDO preferentially partitioned into the condensed phase: HDO/H₂O decreases rapidly to top of convective system. - •Delta-D (HDO) changes by large amount (tens of %). - If adjacent isotopic lines used, precision more important than accuracy. ## Near-IR and Mid-IR Spectroscopy of Water Isotopes H₂O, HDO, H₂¹⁸O, H₂¹⁷O Near-IR 2.63 µm HDO linestrength→ x 2 Mid-IR 6.7 µm - Near-IR lines weaker than Mid-IR, and have stronger interferences from CO₂, other gases - Unlike Mid-IR, Near-IR offers CO₂ normalization ## Mid-IR Measurements of Water Isotopes H₂O, HDO, H₂¹⁸O, H₂¹⁷O - •Region first identified by Rinsland et al. 1984 balloon measurements of HDO. - •ATMOS studied lower stratosphere. - •BLISS made first in situ TDL measurements in 1989. - •WISP developed for WB57-F, but only flown in test flight with no lasers. - •Community awaits *in situ* measurements near tropopause region at high spatial resolution: uncertainty in measured T ~1% at night. | Water Isotope Ratio Measurement Error from Temp Uncertainty of 2 Degrees | | | | | | | | |--|-----------------------|-----------|------------------------|-----------------------|-------------|--------------|-------------| | | | 5 | 50 | 200 | | | | | | | СН | 4 mixing-rat | tio (ppmv) | 0.8 | 1.0 | 1.5 | | | | A | Atmospheric | Temp (K) | 210 K | 198 K | 245 K | | | | Atmosp | heric Pressu | re (mbar) | 60 mbar | 100 mbar | 300 mbar | | | | | | | Error % fro | m +2 deg eri | ror in Temp | | Species | ν (cm ⁻¹) | S (296 K) | E" (cm ⁻¹) | n (cm ⁻¹) | | | | | CH4 | 1483.79230 | 3.65E-22 | 157 | 0.75 | -0.6 | | | | CH4 | 1483.83448 | 2.29E-22 | 157 | 0.75 | | | | | H218O | 1483.92606 | 8.39E-23 | 550 | 0.49 | +0.5 | +0.6 | +0.4 | | HDO | 1484.10644 | 2.32E-23 | 226 | 0.74 | <0.1 | < 0.1 | < 0.1 | | H2O | 1484.25726 | 1.78E-23 | 1899 | 0.50 | Too weak | | | | H217O | 1484.51094 | 1.97E-23 | 205 | 0.59 | < 0.1 | -0.1 | -0.4 | | H218O | 1485.13361 | 6.25E-23 | 1907 | 0.78 | +0.5 | +0.6 | +0.5 | | (HDO/H217O) | | | | | <1 per mil | <1 per mil | 4 per mil | ### **Near-IR** and Mid-IR Isotopic CO₂ Near-IR 2.05 µm Linestrength→ x 2000 Mid-IR 4.24 µm | SPECTRAL REGION | ¹³ CO ₂ /CO ₂ | 18OCO/CO ₂ | | | |---|--|-----------------------|--|--| | Near-IR MET TDLS 4886 cm ⁻¹ | -24 per mil/deg K | +19 per mil/deg K | | | | Near-IR TEGA TDLS 4876 cm ⁻¹ | -6 per mil/deg K | TBD | | | | Near-IR
4868 cm ⁻¹ | +1 per mil/deg K (but dynamic range may limit to 5 per mil total). | Not possible | | | | Mid-IR QCLS strong region at 2302 cm ⁻¹ | -2 per mil/deg K | -1 per mil/deg K | | | | Mid-IR QCLS special 6-
isotope region at 2037 cm ⁻¹ | -1 per mil/deg K, but
can fit temp from Q-
branch | TDB | | | # **Near-IR** Laser Absorption Spectrometer for Global CO₂ Mapping JPL: Robert Menzies (PI), Chris Webster, David Tratt, Gary Spiers **Colorado State Univ.: Graeme Stevens Coherent Technologies: Mark Philips** - Near-nadir cw laser (rare-Earth ion doped) illumination of Earth's surface from orbit. - Analysis of integrated path differential absorption at selected transmit frequencies within CO₂ absorption line region to retrieve tropospheric CO₂ profiles. - Retrieval of CO₂ profiles in lower and middle troposphere by differential absorption in column above land or ocean backscattering surface. - Need column to 1-2 ppmv (0.3%) to define spatial gradients. - Code Y IIP funded for DC-8 demonstration (2003). # **Near-IR** Laser Absorption Spectrometer for Global CO₂ Mapping - •Two near-IR regions suitable for satellite measurements of global CO₂ column - 1.57 μ m (30012 <- 00001) band [Chip Miller, Linda Brown: sharper cores and stronger wings: 2 Voigts reqd.] - $2.05 \, \mu m$ (30013 <- 00001) band - •Optimal combination of optical depth, insensitivity to temperature, and no interferences. ### Outlook for TDL and QC in situ Laser Spectrometers TDL and QC LAS offer excellent sensitivity, specificity, precision, and response time, especially for small molecules. - As *in situ* Earth instrument capability has evolved with aircraft missions, laser spectrometers have a more focused niche: H₂O, N₂O, CH₄, CO, HCl, isotopic measurements, H₂CO - •CO₂ better done with IR absorption (4.3 μm) LiCor NDIR (Wofsy, Sachse, Avallone, etc.): precision 0.01%, accuracy 0.03%. - LIF better for radicals OH, NO₂, ClONO₂, ClO, Cl₂O₂, etc. - •CRDS detection has potential for improved precision, but test flight data (CH₄ precision 0.3%) achieved in 10 sec compare to 1.3 sec for conventional LAS. - *In situ* laser spectrometers for all gases including H₂O will soon be based on mid-IR room temperature cw QC lasers with HgCdTeZn room temperature detectors. - •For H₂O, enormous flight heritage of Near-IR instruments, and excellent InGaAs detectors will delay transition. ## Specific Spectroscopic Measurement Needs – Near-IR #### <u>H₂O:</u> - Immediate need for H₂O in Near-IR 1.37 μm region for 8 existing, flight-tested aircraft and balloon instruments. - Hitran2000: strong lines targeted by instruments rely on outdated incorrect (?) measurements! - Linestrengths, FBC, temp dependences, pressure shifts, partition functions. #### <u>CO</u>2: - Long-term need for Near-IR CO₂ region for global CO₂ LAS measurements. Two near-IR regions suitable for satellite measurements of global CO₂ column - $1.57 \, \mu m \, (30012 < -00001) \, band$ - $2.05 \, \mu m \, (30013 < -00001) \, band$ - All parameters important, including line shifts. Water isotopes H_2O , HDO, $H_2^{18}O$ at 2.7 µm better measured in mid-IR. <u>CH</u>₄: better measured in mid-IR. ## Specific Spectroscopic Measurement Needs – Mid-IR - Tracer gases N₂O, CH₄, CO - Better Lorentz broadening coefficients and temp dependence for CH₄ (V₃), N₂O (V₃), and CO fundamental, better partition functions for temp corrections. - Reactive gases HCl, NO₂, H₂CO, etc - HCl well-measured - Linestrengths and broadening coefficients needed for H₂CO at 1740 cm-1 (Zahniser/Brown?) - Isotopic species: - Water isotopes - CO_2 isotopes - CH₄ isotopes, N₂O isotopes, CO isotopes